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description, with the implicit admission that dif- 
fraction data may well be unable to provide an 
unambiguous result.* 

* Lists of structure factors for all five compounds, U~_js for 
compounds (2), (3) and (4) and assumed H-atom coordinates for 
compound (2) have been deposited with the IUCr (Reference: 
BU311). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. 
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Abstract 

Recently, an approach to the atomic model of the 
A1MnSi quascrystalline phase has been proposed. 
Rhombohedra that differ from those used in the 
Penrose tiling were used to form an approximant. It 
gave a good approximation to the AIMnSi quasicrys- 
tal structure. In the present paper, a strip-projection 
approach to this model is implemented. It is demon- 
strated that the tiling, with the tile edges along the 
threefold axes of the icosahedral symmetry, can also 
be used to describe the structure of the A1MnSi 
icosahedral quasicrystal. The Mackay icosahedra are 
decorated at the vertices of the tiles. 

I. Introduction 

After the first discovery of an icosahedral quasi- 
crystal (Shechtman, Blech, Gratias & Cahn, 1984), 
various models were proposed to describe its struc- 
ture (Elser & Henley, 1985; Guyot & Audier, 1985; 
Yang & Kuo, 1986; Cahn, Gratias & Mozer, 1988a; 
Duneau & Oguey, 1989; Pan, Cheng & Li, 1990; 
Andersson, Lidin, Jacob & Terasaki, 1991). A 
generally accepted geometrical model for describing 

*Present address: Institute of Physics, Chinese Academy of 
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the quasiperiodicity and the symmetry of the quasi- 
crystals has been the Penrose tiling (Penrose, 1974; 
Mackay, 1982). It consists of two different 
rohombohedra [a prolate rhombohedron (PR) and 
an oblate rhombohedron (OR)] as the building tiles, 
packed according to a special matching rule. How- 
ever, the determination of atomic structure remains a 
principal problem. One of the approaches is to 
decorate atoms in the two kinds of Penrose tiles. An 
example shown by Elser & Henley (1985) is that the 
body-centred cubic (b.c.c.) structure of the crystalline 
approximant a-A1MnSi phase was decomposed into 
a periodic packing of the PR and OR, and its atomic 
decoration was proposed to be included in the 
icosahedral phase. Some models were proposed 
based on this approach (Henley & Elser, 1986; 
Guyot & Audier, 1985). 

A different viewpoint was offered by Audier & 
Guyot (1988). From the similarity of intensity distri- 
bution in the diffraction patterns of both the 
a-A1MnSi phase and the quasicrystalline phase, they 
suggested that the Mackay icosahedron, which is a 
54-atom cluster [(A1Si)a2Mn~2] with icosahedral sym- 
metry, is a common building block in both phases. 
Comparison of Patterson syntheses for both the 
phases (Cahn, Gratias & Mozer, 1988b) lends sup- 
port to this assumption, i.e. a description of the 
A1MnSi quasicrystal as a packing of Mackay 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 



456 NEW MODEL OF A1MnSi ICOSAHEDRAL QUASICRYSTAL 

icosahedra. Several models based on this approach 
have been proposed (Audier & Guyot, 1988; 
Andersson et  al., 1991). 

In a transmission-electron-microscopy (TEM) 
study of the precipitation process of industrial A1- 
Mn-Fe-Si  alloys, Hansen, Gjonnes & Andersson 
(1989) found the icosahedral quasicrystal particles to 
be the first precipitates that subsequently trans- 
formed to the a phase. In this sequence, a new 
trigonal structure denoted a ' ,  which was interpreted 
as another packing of the Mackay icosahedra 
(Hansen & Gjonnes, !992), was found as micro- 
domains in contact with the a phase. The two 
structures, a and a ' ,  represent two kinds of 
rhombohedral unit cell, viz the OR corresponding to 
the primitive rhombohedral unit cell of the b.c.c, a 
phase and the complementary PR corresponding to 
the rhombohedral unit cell of the a '  structure. Based 
on these experimental results, a modelling process 
that approached an atomic model of the A1MnSi 
icosahedral quasicrystal was proposed by Hansen & 
Gjonnes (1994) as a packing of the Mackay 
icosahedra in accordance with the two kinds of 
rhombohedra. The PR and OR (Figs. l a and b) 

mant to a true quasicrystalline structure; with refer- 
ence to the tr phase, it was called the secondary 
approximant of the A1MnSi quasicrystal. It is the 
purpose of the present study to investigate this 
further, in particular with regard to whether such a 
modelling process can be derived from a hypercubic 
lattice in six-dimensional (6D) space with a strip- 
projection approach. 

2. 3D quasilattice and its Fourier transformation 

In the present description of the A1MnSi icosahedral 
quasicrystal, ten equivalent threefold axes of the 
icosahedral symmetry are prominent while only six 
of them are independent. Let Ai (i = 1,...,10) be the 
sums of three basic vectors e; (i = 1,...,6) of a 6D 
hypercubic lattice that are along the edges of the 6D 
hypercube unit cell with length A0 = 6.45 A in the 
case of the A1MnSi icosahedral quasicrystal; the 
projections of the Ai in both Ell and E~ are along the 
ten threefold axes of the icosahedral symmetry. In 
the 6D Cartesian coordinate system, which is the 
combination of the Cartesian coordinates in both Ell 
and E± with basic vectors Eli:, E~, E~ and E~., E~_, 
E(L, respectively, the A, are expressed as 
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differ from the commonly used three-dimensional 
(3D) Penrose tiles in having a larger edge length of 
10.88 A (versus 4.6 A for the Penrose tiles) and 
rhombohedral angles of 70.53 ° [=arcos(1/3)] and 
109.47 ° [=  180-70.53°], which correspond to angles 
between triads in the icosahedron, whereas the Pen- 
rose tiles (Amman rhombohedra) have edges parallel 
to the fivefold axes. The size of the present set of tiles 
is such that the Mackay icosahedra can be accommo- 
dated on the vertices of the tiles and the inter- 
icosahedral distance in the a phase is preserved. A 
model with cubic symmetry built from the two types 
of tiles was shown to produce an atomic arrange- 
ment and diffraction patterns with near icosahedral 
symmetry and was hence suggested as an approxi- 

where 7. = (1 + 51/2)/2. As for the threefold axes in 3D 
space, of these ten equivalent vectors only six are 
independent. Therefore, six of them could be chosen 
as the basic vectors for specifying the hypercubic 
lattice, although the 6D unit cell specified by such 
basic vectors is not a hypercube but the 6D hypercu- 
bic lattice is unchanged. There are several different 
choices of the basic vector sets from Ai that are equal 
but with differently oriented unit cells. For a tiling in 
3D space with its tile edges along all the ten equiva- 
lent threefold axes, the projections of ten Ai in Ell and 
E± are taken as the basic vectors in both spaces. 
Therefore, if a corresponding 6D unit cell is defined 
as specified by all ten vectors A;, it contains all the 
differently oriented unit cells specified by different 
basic vector sets. In the 3D Cartesian coordinate 
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systems, the 

all = A(1,  

al = A(1,  

= A ( -  

= A(1,  

= A('r, 

basic vectors are expressed as 

1, -- 1), a~ = A(z,  1/z, 0), 

- 1, 1), a~ = A(1/'r, O, 'r), 

1, 1, 1), al~ = A(O, "r, I / z ) ,  

l ,  1), a~ - A ( -  1/z, O, -r), 

- 1/z, 0) ,  all ° = A ( 0 ,  z ,  - 1/z). 

(2a) 

and 

a 1 = B ( -  1, - 1, 1), a 4 = B(1/~-, r,  0) ,  

a 2 = B ( -  1, 1, - 1), a~ = B(r, O, l/r) ,  

a 3 = B(1, - 1, - 1), a 6 = B(O, 1/'r, "r), 

a 7 = B ( -  1, - 1, -- 1), a 9 = B(-~ ' ,  0, 1/7), 

a s = B(1/'r, - z ,  0), a~  = B(O, I/z, - z ) ,  

(2b) 

where A = A0~/[2(1 + ~)]1/2 = 6.28 A and B = Ao/ 
{'r[2(1 + "r2)] 1/2} = 1.48 A. The configurations of all 
basic vectors are shown in Figs. 2(a) and (b). The 
length of the ali ( i =  1,2,..., 10) is 10.88 A, which is 
the edge length of the PR and OR. The correspond- . 
ence of the configuration of the all and the ak  
(i=1,. . . ,10) could also be derived from the 
icosahedral point symmetry. 

According to the strip-projection method (Elser, 
1985), the 3D quasilattice or the tiling is the projec- 
tion of all the 6D hypercubic lattice points located 
inside a strip S onto Ell. The tiles are spanned by 
three basic vectors in Eli and every combination of 
three basic vectors from ten all forms a tile, which 
leads to in total C30 -- 120 different tiles in the 
present tiling. In addition to the ten different ori- 
ented PR and twenty OR there are three other 
distinct tiles with monoclinic prismoidal shapes 
[hereinafter denoted MR1, MR2 and MR3, with 

shapes as shown in Figs. l(c), (d) and (e)]. In the 
present 3D tiling, there are 30 different orientations 
for each. Among them, MR1 and MR2 have 
appeared before in a quasiperiodic tiling with broken 
icosahedral symmetry derived by Socolar, Steinhardt 
& Levine (1985) from the so-called 'generalized dual 
method',  which has only six independent basic vec- 
tors along six of the ten threefold axes. The matching 
rule for packing these tiles in the present description 
is determined by the orientation of the strip S in the 
6D space, which is now parallel to Ell. 

To provide a description of the structure of the 
A1MnSi quasicrystal, the present tiling must have 
both quasiperiodicity and icosahedral symmetry. The 
former is ensured by the irrational orientation of the 
strip S within the 6D periodic lattice. The latter 
condition, which has been studied extensively (see 
review papers, e.g. Janssen & Janner, 1987), follows 
from the embedding of the periodic lattice in the 
higher-dimensional space and the symmetry of the 
projection window in the pseudo-space. The basic 
vectors in both Ell and E .  are consistent with the 
icosahedral symmetry. The projection window in E± 
is taken as the projection of the unit cell specified by 
ten basic vectors Ai onto E . :  Wj_={Y~l°]xia~ 
- ~  < x~< ~}; it is an enneacontrahedron (Fig. 3; 
Kramer & Haase, 1989), which has icosahedral sym- 
metry and is formed by packing all the 120 different 
rhombohedral tiles together without holes and over- 
laps. Therefore, the tiling obtained from this 
projection window does have icosahedral symmetry. 

The Fourier transformation of the 3D quasilattice 
was calculated using the method of Elser (1986). As a 
simplification, the spherical approximation of the 
projection window was used in the present calcula- 
tions, which does not change the symmetry of the 
Fourier transformation patterns. If all the quasilat- 
rice points in the 3D tiling contain the same atom or 
atom cluster (viz the Mackay icosahedron), the kine- 
matical intensities of the diffraction peaks can be 
obtained by multiplying the atomic scattering factors 
o f t h e  atom or atom c uster by the amp itude factors 
that are the Fourier transformation of the projection 

I ) <  -.. 

(c) (d) (e) ,~L1--'-______~aT~ ~.[o .a~i , k / _ . . . . _ _ ~ j  t 

Fig. 1. Five different tiles in the 3D projected quasilattice: (a) n *-a~. 
prolate rhombohedron (PR); (b) oblate rhombohedron (OR); 
(c), (d) and (e) monoclinic prismoidal shapes (MR) 1, 2 and 3, Fig. 2. Configurations of basic vectors a~ and a~ ( i=  1,2 ..... 10) in 
respectively. Here, a = 70.53 and a '  -- 41.83 °. the physical space Ell and the pseudo-space E±, respectively. 



458 NEW MODEL OF A1MnSi ICOSAHEDRAL QUASICRYSTAL 

window. Fig. 4 shows a set of calculated Fourier 
transformation patterns of the quasiperiodic tiling 
derived above along its five-, three- and twofold axes, 
respectively, where the areas of the circles are pro- 
portional to the amplitude factors of the correspond- 
ing reciprocal vectors. 

3. Approximants in AIMnSi alloys 

So far, much work has been done with the approxi- 
mants of the quasicrystals (e.g. Ishii, 1989; 
Dmitrienko, 1990; Li & Cheng, 1990; Niizeki, 1992). 
Changing the orientation of the strip S in the 6D 
space changes the matching rules of the tiles and 
results in a series of approximants with periodic 
packing of the tiles. The Fourier transformations of 
these approximant lattices are calculated by rotation 
of the reciprocal physical space EI~' in 6D reciprocal 
space to an orientation parallel to the rotated strip 
(e.g. Elser & Henley, 1985; Mai, Tao, Zhang & Zeng, 
1989; Cheng, Pan & Li, 1992). As mentioned in the 
Introduction, it is our purpose to derive all the quasi- 
crystalline approximants proposed by Hansen & 
Gjonnes (1992, 1993) in their modelling process of 
the A1MnSi alloys from the strip-projection view- 
point. 

Fig. 3. Enneacontrahedron with icosahedral symmetry. 

(i) a-A1MnSi phase 

The a-A1MnSi phase has a b.c.c, or nearly b.c.c. 
structure with space group Im3 or Pro3 and lattice 
parameter about 12.56 A (Cooper, 1967; Cooper & 
Robinson, 1966). Its structure has a close rela- 
tionship with the icosahedral phase of the same 
alloy, viz both contain Mackay icosahedra as the 
main building blocks of the structure. The primitive 
rhombohedral unit cell of the a phase is the OR tile 
in the present projected tiling• In this case, the Ai 
(i = 1,...,6) were used as the basic vectors and the 
corresponding strip S'  was formed by moving the 
noncubic unit cell specified by these six basic vectors 
along a certain orientation: 

" A ] -  

r il Ii 1°°°!1 A2 = 0 1 0 0  A3 

LSzj 1 1 0 0  A4 
A5 

_A6 _ 

(3a) 

S' is now rational to the 6D periodic lattice and 
perpendicular to A4, A5 and A6. This leads to a 
periodic packing of OR spanned by only (all],all,all),2 3 
which is obviously the b.c.c, lattice of the a-A1MnSi 
phase. Fig. 5 shows the calculated Fourier trans- 
formation patterns along the [~-10], [111] and [100] 
directions, respectively, which are the same as those 
calculated from the phason-defected Penrose tiling. 

(ii) a' phase 

The a '  trigonal structure was first found as the 
domain in contact with the a phase in precipitate 
particles during the transformation of the 
icosahedral phase to the ce phase (Hansen & 
Gjonnes, 1992)• Later, it was found as precipitate 
particles formed directly from the supersaturated 
aluminium solid solutions (Cheng, Hansen, Gjonnes 
& Wallenberg, 1992). As for the a phase, the strip 

a . . " . , . : ~ ; " . . • ; ~ o ,  h . . . - . . . . :  . .  • ¢~, <~ ~).~. 
" • •  " • • ' • . ' .  • • ' • "  ° . J U I . •  • • • • * • • • " "  , ~  ~ " .  . . . .  _ ' 2  , ~ "  
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• . . . - . . .  . . . . . . .  . v .  v " -  - -  v e ' v "  . o : o .  

.'* -':6:" .--b"." c;:.. ":b:'. - a".'.. '. "6".'. ". "o'. .'. " 2". ~ '°:'~" ..o~o :o..-..o..,. .o: ,:.~0.. "~'o- 
~ o : .  • 0  . e . e . O .  " ' 0 ;  " . .  o . . "  e . . *  " . .  o . •~  . ¢ 0 " . ' ~ : . ~ ' e ' ' . : ¢ ' . ' 0 ~ . .  

" "  " "  • . . . .  • " 0  " "  ¢ . . . . . . . . . . . .  . ' 0 " "  " O ' ~ b ' e ~ . ' O "  " ' 0 "  
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Fig. 4. Calculated Fourier transformation patterns of the 3D projected quasiperiodic tiling along (a) a fivefold axis, (b) a threefold axis 
and (c) a twofold axis. 
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was rotated to a rational orientation: taking the orientation of the strip S"  as follows: 

s; 
s" 

E -114°   
= - 1 1 0 0  

1 1 0 0  

-AI- 

A2 

A3 

A4 

A5 

_A6_ 

(3b) 

-A]- 

A2 Iioo lOil,, 
S'~,[= 0 1 0 0  A4 
S " J  1 0 0 1  A5 

_A6. 

(3c) 

S" is now perpendicular to A], A5 and A6. This 
causes the periodic packing of only PR (all2,arl3,all),4 
which corresponds to the trigonal rhombohedron of 
the a '  structure. The calculated patterns along a 
pseudo-fivefold axis and the [111] and [110] direc- 
tions, are given in Fig. 6. The orientation rela- 
tionship with the icosahedral quasicrystal should be 
the [1T0]~, parallel to a twofold axis of quasicrystal 
and the [111]~, parallel to a threefold axis. 

(iii) Secondary cubic approximant 

In the secondary cubic approximant constructed 
by Hansen & Gjonnes (1992, 1994), the unit cell 
contains four PR and four OR with a lattice param- 
eter of about 20.33/k and the space group Pa3. Its 
optical diffraction pattern gave a good approxi- 
mation to the diffraction patterns of the quasicrystal 
(Fig. 7b). This secondary approximant is obtained by 

The projected tiling in Eli is the same as Hansen & 
Gjonnes (1992, 1994) constructed in their paper, viz 
the periodic packing of both PR and OR but without 
MRs. Fig. 7(a) shows the calculated patterns along a 
pseudo-fivefold axis and Fig. 7(b) is the optical dif- 
fraction pattern from the paper by Hansen & 
Gjonnes (1994). The similarity between the two pat- 
terns is apparent. 

Beyond this secondary cubic approximant, PR and 
OR cannot fill the whole space and some MRs are 
needed. This results in faults in the proposed model- 
ling process. Differently oriented tiles must be taken 
into the tiling, which corresponds to the involvement 
of differently oriented unit cells in the 6D space• 

4. Atomic decoration of the tiles 

In the A1MnSi alloys, the atomic structure of the 
most important approximant, the a phase, is well 

8 o ' . o ~ . ' o . ' . ~ . . " o .  h "  " • " " "  " • " " "  " g ' . ' o ' . ' " o ' " '  
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I • o o • o • . . 0  • 
) . . o ' o . . . o ' o  . c . ° .  . . o . : . . o . ' o , . ° o ' o ° . ° o * . ° o  o ° .  

" o ' o "  + ' 0 " , ,  * o  o "  . • • . • • . • • * o . • o • • 

Fig. 5. Calculated patterns of the approximant a lattice along (a) a pseudo-fivefold direction, (b) the [100] direction and (c) the [111] 
direction. 
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Fig. 6. Calculated patterns of the trigonal approximant a' structure along (a) a pseudo-fivefold axis, (b) the [110] direction and (c) the 
[ 111 ] direction. 
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determined. It gives the atomic decoration of OR, 
that is, the Mackay icosahedra decorated on its 
vertices with their threefold axes parallel to the edge 
directions of the rhombohedra and with some 'glue' 
atoms between the Mackay icosahedra. The structure 
of the a '  trigonal lattice that appears in the present 
treatment as an alternative approximant as well as 
the a phase in the same alloy was believed to have 
the Mackay icosahedra located at the vertices; it 
gives the decoration of PR. Then, in the 3D tiling, all 
the Mackay icosahedra have the same orientation, 
i.e. the threefold axes of the Mackay icosahedra 
coincide with the edge directions of the tiles. For 
MRs, it should be noted that the distances between 
some of the vertices such as i a n d j  in MR1 (Fig. lc) 
or i and k in MR2 (Fig. ld) and so on are too short 
to decorate the complete Mackay icosahedra at all 
these vertices. Hansen & Gjonnes (1994) indicated 
that the third-order approximant will contain certain 
defects where some of the Mackay icosahedra must 
be removed• In the model proposed by Andersson et 
al. (1991), many Mackay icosahedra are cut in order 
to get a close packing. It seems that the atomic 
decoration of MRs should be treated in a similar 
way; that is, by removing some of the Mackay 
icosahedra from some quasilattice points or by cut- 
ting some of these Mackay icosahedra to fit the 
shapes of those tiles. 

5 .  D i s c u s s i o n  

The tiling that is proposed here differs from the 
commonly used 3D Penrose tiling but is derived 
from the same 6D hypercubic lattice and might be 
regarded as a subquasilattice of the Penrose tiling. 
Actually, the basic difference between the present 
approach and the procedure leading to the Penrose 
tiling lies in the choice of projection window in E j_, 
whose volume equals the density of the quasilattice 
points of the tiling (Elser, 1986). The tria- 
contrahedral window for the Penrose tiling has a 

It.: "/," - • ":" ".- . 'o" - . • . • • • • 
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Fig. 7. (a) Calculated patterns of the cubic secondary approximant 
along a pseudo-fivefold axis and (b) the optical diffraction 
pattern of a projected model along the same direction of the 
cubic secondary approximant model (from Hansen & Gjonnes, 
1992). 

larger volume than that of the present ennea- 
contrahedral window; Venne a = 0.888 Vtria. A 
remaining question is whether the present tiling can 
be constructed without overlap of the tiles; it seems 
that this is the case but no mathematical proof has 
yet been presented. The atomic decoration of the 
tiles has not been solved completely• It is seen that 
the OR as well as the PR can accommodate Mackay 
icosahedra, but some additional 'glue' atoms must be 
included in these. The decoration of MRs will need 
special consideration, e.g. by study of the approxi- 
mants beyond the second. 

Some experimental observations support the 
present tiling, especially the OR and PR tiles. In a 
TEM study of the precipitation process of the indus- 
trial A13003 alloys (Cheng, Hansen et al., 1992), 
evidence of three different nucleation paths of disper- 
soid particles was found, viz (1) the icosahedral 
quasicrystal formed first from aluminium solid solu- 
tion and then transformed to the a phase upon 
further heat treatment, (2) the a-phase particles with 
relatively perfect structure formed directly from 
aluminium solid solution and (3) the a '  particles 
with imperfect trigonal structure also formed directly 
from aluminium solid solution. All these particles 
have Mn/Fe-containing Mackay icosahedra as their 
basic atomic building blocks. This suggested that 
three different nucleation paths originate from the 
Mackay icosahedra in the aluminium solid solution 
that, predicted from the theoretical calculation 
(Boyer & Broughton, 1990), are energetically 
favoured over other atomic clusters during the solidi- 
fication process. On heat treatment, the different 
packings of the Mackay icosahedra result in the 
different nucleation paths. When Mackay icosahedra 
are packed only on the OR, the a-phase particles are 
formed; when they are packed only on the PR, the 
trigonal lattice particles are formed. When both 
packings are mixed together, particles with 
icosahedral quasicrystal structure are formed. But 
the Mackay icosahedra could not be packed only on 
the MRs because there is not enough space in these 
tiles for decorating Mackay icosahedra; this is the 
reason why no precipitate was found to have the 
structures of MRs. On the other hand, since the 
whole space cannot be filled by PR and OR, the gaps 
between them are filled by MRs. 
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BY MARK R. PRESSPRICH, CORNELIS VAN BEEK* AND PHILIP COPPENS 

Department of Chemistry, State University of New York at Buffalo, Buffalo, N Y 14214, USA 

(Received 3 November 1992; accepted 2 December 1993) 

Abstract 

The temperature dependence between 30 and 300 K 
of the intensities of 24 reflections of the column- 
composite structure Hg0.vv6(BEDT-TTF)SCN 
[Wang, Beno, Carlson, Thorup, Murray, Porter, 
Williams, Maly, Bu, Petricek, Cisarova, Coppens, 
Jung, Whangbo, Schirber & Overmyer (1991). Chem. 
Mater. 3, 508-513; BEDT-TTF = 3,4,3',4'-bis(ethy- 
lenedithio)-2,2',5,5'-tetrathiafulvalene] has been 
analyzed in terms of a model including phason tem- 
perature factors. The temperature dependence of the 
main and first-order satellite reflections is reasonably 
well reproduced in a refinement with 236 observa- 
tions and four variables. The results are interpreted 
in terms of a temperature independence of the static 
displacement amplitudes. The room-temperature 
r.m.s, phason fluctuations of the mercury sublattice 
are 50 (2) ° . This value implies that the mean mercury 
displacement amplitude will increase by - 6 0 %  on 
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lowering of the temperature to within the liquid- 
helium range. The thermal contraction on cooling is 
the same for the two sublattices. 

Introduction 

For a modulated crystal, the usual description of the 
effect of atomic thermal motion on the reflection 
intensities must be modified by the introduction of 
Debye-Waller factors that vary from unit cell to unit 
cell along the modulation-vector direction, as the 
translational symmetry in this direction no longer 
exists. The temperature-factor modulation can be 
described by a Fourier series, the form of which 
follows from superspace-group theory (Yamamoto, 
1982). 

In addition, the phase and amplitude of the modu- 
lation can fluctuate. Such modes are thermally 
excited at quite low temperatures. The temperature- 
factor theory of phasons and amplitudons was intro- 
duced by Overhauser (1971) and further developed 
by Axe (1980). Perez-Mato & Madariaga (1990) 
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